Electrophoretic capture of a DNA chain into a nanopore.
نویسندگان
چکیده
Based on our formulation of the DNA electrophoresis near a pore [Rowghanian and Grosberg, Phys. Rev. E (to be published)], we address the electrophoretic DNA capture into a nanopore as a steady-state process of particle absorption to a sink placed on top of an energy barrier. Reproducing the previously observed diffusion-limited and barrier-limited regimes as two different limits of the particle absorption process and matching the data, our model suggests a slower growth of the capture rate with the DNA length for very large DNA molecules than the previous model, motivating more experiments beyond the current range of electric field and DNA length. At moderately weak electric fields, our model predicts a different effect, stating that the DNA length dependence of the capture rate first disappears as the field is reduced and eventually reverses to a decreasing trend with N.
منابع مشابه
Mechanical Trapping of DNA in a Double-Nanopore System.
Nanopores have become ubiquitous components of systems for single-molecule manipulation and detection, in particular DNA sequencing where electric field driven translocation of DNA through a nanopore is used to read out the DNA molecule. Here, we present a double-pore system where two nanopores are drilled in parallel through the same solid-state membrane, which offers new opportunities for DNA...
متن کاملStretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.
Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic mode...
متن کاملElectrophoretic force on a protein-coated DNA molecule in a solid-state nanopore.
Using solid-state nanopores with optical tweezers, we perform force spectroscopy on DNA molecules that are coated with RecA proteins. We observe that the electrophoretic force is 2-4 times larger for RecA-DNA filaments than for uncoated DNA molecules and that this force increases at lower salt concentrations. The data demonstrate the efficacy of solid-state nanopores for locally probing the for...
متن کاملEffective driving force applied on DNA inside a solid-state nanopore.
A detailed understanding of the origin of the electrophoretic force on DNA molecules in a solid-state nanopore is important for the development of nanopore-based sequencing technologies. Because of the discrepancies between recent attempts to predict this force and both direct and indirect experimental measurements, this topic has been the focus of much recent discussion. We show that the force...
متن کاملElectrophoresis of a DNA coil near a nanopore.
Motivated by DNA electrophoresis near a nanopore, we consider the flow field around an "elongated jet," a long thin source which injects momentum into a liquid. This solution qualitatively describes the electro-osmotic flow around a long rigid polymer, where due to electrohydrodynamic coupling, the solvent receives momentum from the electric field. Based on the qualitative behavior of the elong...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 4 شماره
صفحات -
تاریخ انتشار 2013